AAPA Facilities and Engineering Seminar

Robert Tolsma PE, PPM, D.PE Division Manager Atkins North America San Diego, CA Oct 22, 2015

NTK

Realizing the Value of Port Infrastructure Reinvestment Through Life Cycle Cost Analysis

Everything is fine until it's not!

-**O**R-

Agenda

- Introduction of Atkins
- Project Identification
- The Process
- Inspection, Assessment, and Surveys
- Structural Testing
- Pre-Engineering
- Asset Management Integration

Atkins at a glance

- Atkins is one of the world's foremost engineering design consultancies. Established in 1938.
- A long-standing reputation for technical excellence in providing clients cost-effective and carbon-conscious solutions.
- 18,000 employees worldwide
- World's 15th largest global design firm (ENR 2014)
- 2,700 US Employees in 80 offices

Who we are: vision and mission

Vision

To be the world's best infrastructure consultancy

Mission

Plan Design Enable

Plan

From cost and risk planning, feasibility studies and logistics, to impact assessments and stakeholder engagement activity, we plan every aspect of our clients' projects.

Design

Atkins designs intellectual capital such as management systems and business processes. We also design physical structures such as office towers, schools, bridges and highways.

Enable

Our clients entrust us with the management of projects, people and issues – ensuring that deadlines are met, costs are controlled, and success is delivered.

Ports & Terminal Group

Ports and Terminals Atkins Cross Practice Integration

PORTS	S and COASTAL	TRANSPORTATION	PROCESS ENGINEERING	CONSTRUCTION SVCS
Landside • Planning • Cruise fac • Cargo faci • Structures • Rail yards • Infrastruc • Warehous • Security a Administr Facilities	ilities • Aids to nav s • Structures • Off-shore • Marina fac sing • Beach mar • Beach mou	vigation ilities nagement	 Upstream , midstream, downstream refining and terminals Greenfield and brownfield development projects Onshore facilities (production processing, terminal, tank farm) Offshore facilities (subsea) Front end process design and technology selection Multidisciplinary feasibility, concept and FEED studies Production operations support 	 Contracting Construction inspection Long-range scheduling ENVIRONMENTAL Ecological studies NEPA process Permitting Hazardous waste FATE modeling Resource mapping Archeology Environmental damage assessments

The Process

- Collect Existing Information
- Initial Visual Inspection
- Assessment, Testing and Evaluation
- Preliminary Basis of Design
- Options Analysis and Cost Estimates
- Re-evaluate the Basis of Design and Options vs Operational Requirements and Budget

Decision Drivers

- Safety
- Operational Requirements
- Cost, Budget and ROI
- Strategic Plan
- Tenant Requirements

Project Identification: What type of project do you have?

- Repair and Rehabilitate Hold the line
- Upgrade Improve
- Demolish and Replace Start over

NTKINS

Repair and Rehabilitate?

Upgrade?

NTKINS

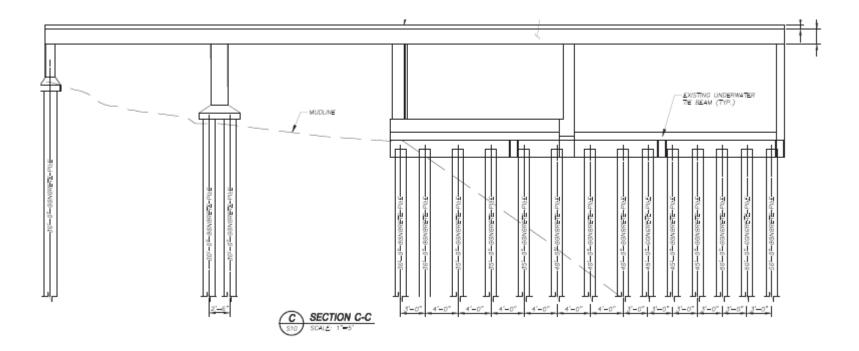
Demolish and Replace?

Assessment Phase: Surveys

- 1. Above and below deck Land Surveying
- 2. Bathymetric and Multi-Beam Survey
- 3. Subsurface Utility Investigation: Stormwater, Product Lines, Electric, Communications, Etc.

Geotechnical Data Goals

- Axial capacity of existing as well as proposed piles
- Lateral capacity of piles
- Physical properties of soils: Strength, Reactivity, Etc


Geotechnical Findings

Description	Description Plasticity (%)		Со	isture ntent %)	Moisture Content vs. Plastic Limit ¹	Undrain Shear Strengt (psf)	r : h ²		N-Value ³ (bpf)		ercentage of Fines ⁴ (%)
Silty Sand NP ⁵			12	to 13				:	2 to 4		25 to 26
Fat Clay 29 to 62		2	23	to 75	-1 to +53	700 to 3 ⁴	100	WC	0H ⁶ to 16		90 to 99
Lean Clay and Sandy Lean Clay	8 to 29)	20	to 35	+2 to +16	1100 to 2	500	WC	DH [€] to 16		69 to 100
Silt and Sandy Silt	3		:	26	+9			WOH ⁶ to 2			
Clayey Sand, Silty Sand, and Sand	3		20	to 24	+4			2 to 9			6 to 36
Elevation ² (feet)	Estimated Unit Wt. (pcf)	Effect Uni Weig (pcf	it Jht ³	Soil Type	LPILE Soil Type Number ⁴	Lateral Subgrade Modulus (pci)	Stra (in/		Undraine Shear Strengtl (psf)		Angle of Internal Friction (degrees)
+12 to +5	120			Sand	5	25		-	0		26
+5 to -2	115	53	3	Sand	5	20	-	-	0		25
-2 to -26	120 5		3	Clay	1		0.0	20	200		0
-26 to -36 125 6		63	3	Clay	3		0.0	07	1000		0
-36 to -46	125	63		Clay	3		0.0	07	1500		0
-46 to -58	6 to -58 125 63		3	Clay	3		0.0	07	1700		0
-58 to -78 120 53		Clay	3		0.0	07	2000		0		

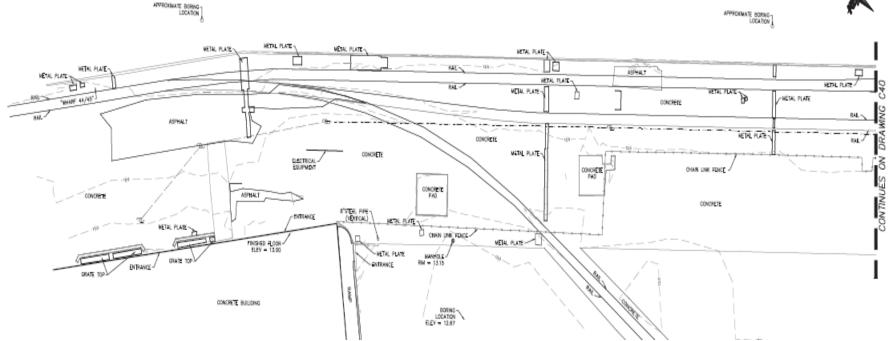
Typical Structural Assessment

•Tactile and Visual Structural Inspection

- Above Water Structural Inspection
 - \odot Top of Slab
 - \odot Bottom of slab to water surface
- \circ Underwater Structural Inspection

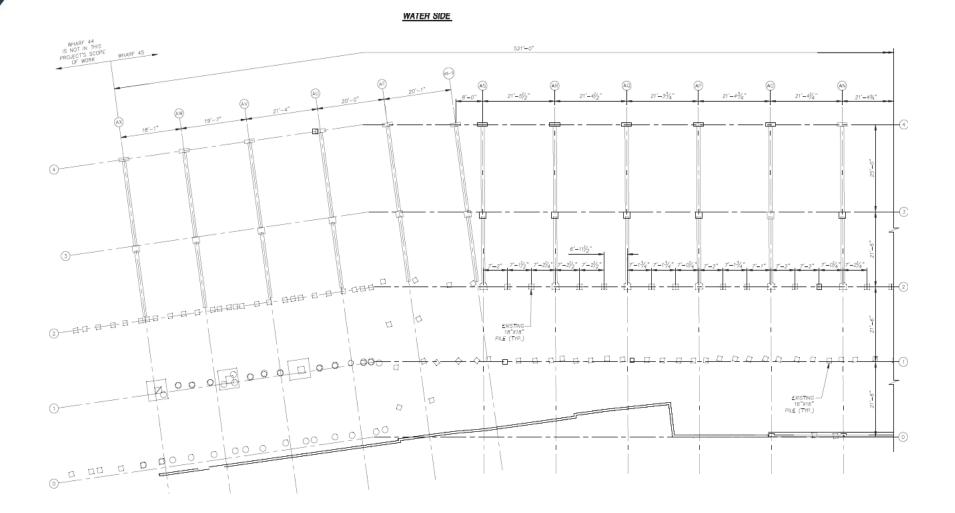
cover

Materials Assessment / Testing


Concrete compressive strength evaluation destructive and non-destructive coring and Schmidt hammer tests

Rebar investigation (using Ground Penetrating Radar)

Carbonation depth testing


Typical structural cross sections

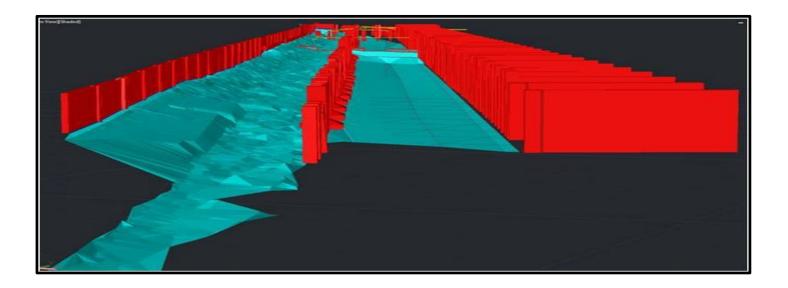
Topside Survey: Features **Structures**

NTKINS

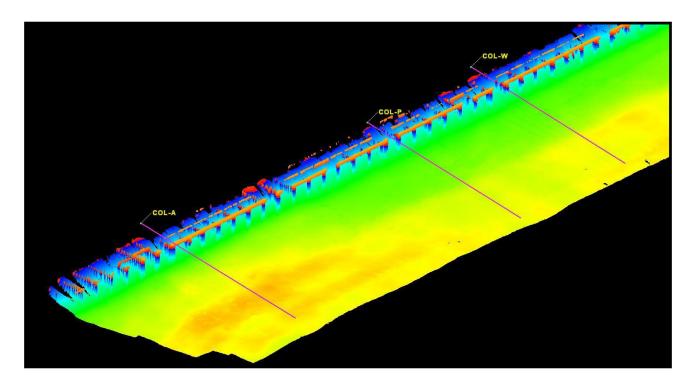
Below-Deck Survey: Location and geometry of existing elements

NTKINS

Underwater Multi-beam Bathymetric Survey


- Similar to the above water 3D imaging, provides mulline as well as structural/foundation elements information
- Provides information concerning piles and their location
- Combines with the above-water imaging in the 3D model
- No Surprises, nothing unexpected detected
- Useful for design including slope-stability analysis

Utility Survey



3D Model

The 3D model is similar to as-built drawings. It can be a very effective tool in planning work due to it's accuracy.

Bathymetry and multi-beam survey

3D Rendering of the Site

What should you look for?

ASCE Structural Inspection Rating System

Serious

Critical

7	Good Condition (Minor defects noted.)
6	Satisfactory Condition (Structural elements show some minor deterioration.)
5	Fair Condition (All primary structural elements are sound but may have minor section loss, cracking, spalling, or scour.)
4	Poor Condition (Advanced section loss, deterioration, spalling, or scour.)
3	Serious Condition (Loss of section, deterioration, spalling, or scour have seriously affected the primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.)
2	Critical Condition (Advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed structural support. Unless closely monitored, it may be necessary to close the structure until corrective action is taken.)
1	Failed Condition

Sample Sub-water Results

- Only water side piles are inspected
- 95% of the piles are in excellent condition
- All piles are found to be 18"x18" square concrete piles versus 16"x16" shown on plans. Depth to mudline confirmed.
- Inspection discovered beams connecting the bents

Total number of piles	1294
Number of piles inspected	645
Number of piles in rating 1-4	30 (5%)
Number of piles in rating 5 or better	615 (95%)

Underwater Inspection

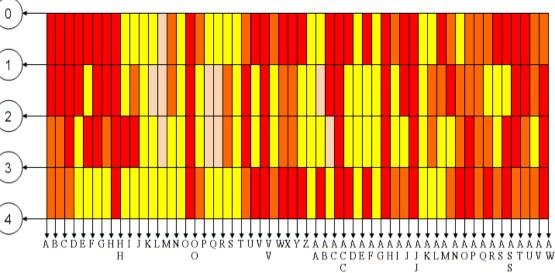
Underwater Beams

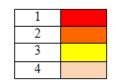
Above Water Structural Inspection: Beams

Number of beams/Pile caps	686
Number of beams in rating 1-4	518 (~75%)
Number of Beams in rating 5-6	168 (~25%)

Above Water Structural Inspection: Columns

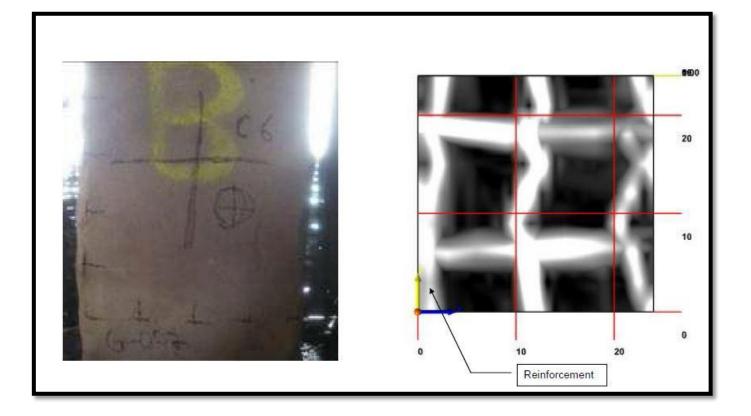
Number of columns	529
Number of columns with rating 1-4	271 (51%)
Number of columns with Rating 5-6	258 (49%)


Above Water Structural Inspection: Shear Walls


Number of shear wall segments	106
Number of shear wall segments in rating 1-4	27 (~25%)
Number of shear wall segments in rating 5-6	79 (75%)

Structural Slab Inspection

NTKINS



Number of slab segments	232
Number of segments in rating 1-4	232
Rating 5-6	0

GPR Scan to Locate Rebar

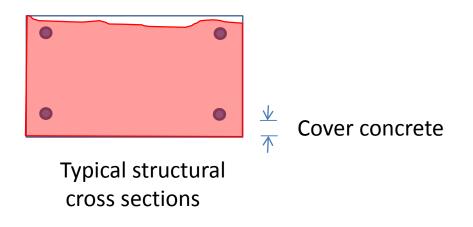
GPR Scan to Locate Rebar

Schmidt Hammer Test – nondestructive test for surface concrete

NTKINS


Concrete Coring: to confirm concrete properties, perform Carbonation Depth Test

NTKINS


NTKINS

Carbonation Depth Test

Structural Material Testing: Durability

• If Chemical ingress depth has exceeded the cover concrete, then there will be continued, unabated, rebar corrosion

Structural Material Testing: Concrete

No.	Structural Entity	Average Compressive Strength (psi)	Standard Deviation (psi)
1	Row - 0 piles/walls	2984	246
2	Row -1 24" columns	3386	155
3	Row -1 16" columns	2902	237
4	Shear walls	3246	214
5	Row 2 shear wall columns	3598	471
6	Row 2, 18" columns	3233	326
7	Row 3 shear wall columns	3458	556

- Concrete compressive strength reliably above 3000psi and low variability
- More than 100 rebound hammer tests show reliable concrete compressive strength throughout the structural members

Topsides Assessment: Hardware/Fenders

Establishing the Basis of Design

- Operational Requirements Now and the foreseeable future
 - Cargoes to be handled and methods
 - Vessel characteristics
 - Barges vs ships
- Structure strength and capacity
- Single tenant or general purpose
- Design life
- Access issues
- Rail and intermodal requirements

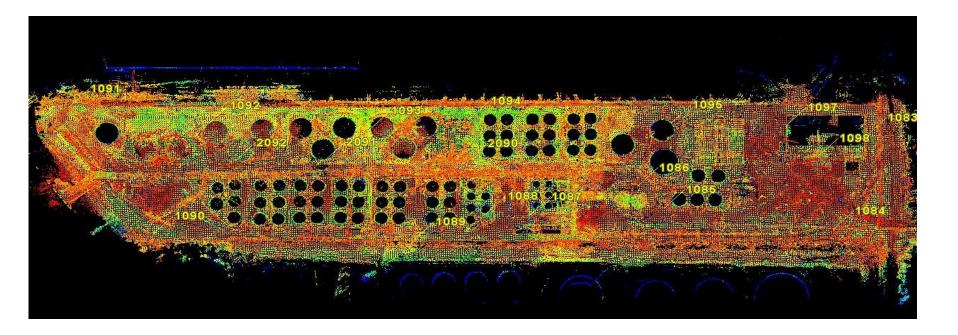
Pre-Engineering Methodology

- Evaluate methodologies based on planned uses
- Foundations analysis in APile and LPile
- Structural sections based on current ACI design process
- Fenders designed based on berthing energy analysis
- Finite Element Analysis dolphin foundations
- Costs estimates based on actual quotes from manufacturers, suppliers and local contractors

Project Example

Before

After

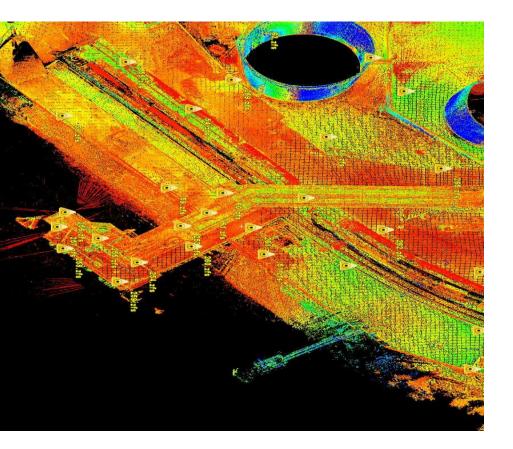


Integrating Asset Management into the Process

NTKINS

Asset Management

Optimize life-cycle costs and facilitate asset preservation GIS technology with ESRI's latest ArcGIS server platform


High-definition Surveying

- Terrestrial laser scanning
- 3D Models & 4D Visualization
- Digital terrain models
- Ortho-rectified imagery
- Sections, elevations & profiles
- Structural & site plans
- Surface deviation analysis
- 2 & 3 dimensional planimetrics
- Vertical & horizontal clearances

NTKINS

Marine Structural Applications

- Provides terminal operators with a tool to better manage assets; readily access record drawings and facility infrastructure information.
- Enhanced decision support
- Increased accessibility
- Improved collaboration and consensus development
- Platform standardization

NTKINS

Atkins North America

Thank you!

Robert Tolsma PE, PPM, D.PE

Tallahassee FL.

bob.Tolsma@atkinsglobal.com

American Association of Port Authorities

lliance of the Ports of Canada, the Caribbean, Latin America and the United States